

AD

AD-E400 219

TECHNICAL REPORT ARLCD-TR-78018

TNT EQUIVALENCY OF COMPOSITION A5

G. L. MCKOWN
F. L. MCINTYRE
NASA NATIONAL SPACE TECHNOLOGY LABORATORIES

J. MORONEY, PROJECT LEADER
W. BADOWSKI, PROJECT ENGINEER
ARRADCOM

SEPTEMBER 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

78 10 26 009

This doe parallels

AD-055 977 - Source Suly

Source suly

15 atty

SOE/COCK

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the United States Government.

1. 7. 7. 7. 7. 7. 4

VACUATION CONTRACTOR

9 400 152 555 Bullion

UNCLASSIFIED

ARLCD-TR-78018 ARLCD-TR-78018 ARICU-TR-78018 ARICU-TR-78018 TITLE (and Subtitio) THT Equivalency of Composition A5. Final Report. Final Report. Final Report. CANTING COMPOSITION ASA J. /Moroney Project Leader, ARRADCOM W. // Badowski) Project Leader, ARRADCOM W. // Badowski) Project Engineer, ARRADCOM PREFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident: Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 The Contract or Grant Number(2) II. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS Dover, NJ 07801 The Mointforing Abercy NAME & ADDRESS(If different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 The Mointforing Abercy NAME & Address(If different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 The Mointforing Abercy NAME & Address(If different from Controlling Office) The Mointforing Abercy NAME & Address(If different from Controlling Office) The Mointforing Abercy NAME & Address(If different from Controlling Office) The Mointforing Abercy NAME & Address(If different from Controlling Office) The Mointforing Abercy NAME & Address(If different from Controlling Office) The Mointforing Abercy NAME & Address(If different from Controlling Office) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointforing Abercy NAME & Address(If different from Report) The Mointfori	ARLCD-TR-78018 ARRADCOM, LCWSL ARRADCOM, LCWSL ARLCD-TR-78018 ARRADCOM, LCWSL		TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
TITLE (and Substitio) TNT Equivalency of Composition A5. The equ	TITLE (and Substities) TNT Equivalency of Composition A5. Final Report. 6. PERFORMING ORG. REPORT NUMBER J. MOTOREY Project Leader, ARRADCOM W. Badowski Project Engineer, ARRADCOM MIPR-816B662101F4W5 PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM, LCWSL MAINT: DRDAR-TSS DOVER, N.J. 07801 12. REPORT DATE September 1978 13. HOUNGER'S HAVE A ADDRESS(II different from Controlling Office) 14. MONITORNING AGREEMENT (AIR & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Approved for public release; distribution unlimited 16. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) B. SUPPLEMENTARY NOTES Peak side-on pressure Scaled distance Geometric configuration 6. ABSTRACT (Continue on reverse Alba M messessary and Identity by Block number) Scaled positive impulse 6. ABSTRACT (Continue on reverse Alba M messessary and Identity by Block number)	1. REPORT NUMBER	PORT NUMBER 2. GOVT ACCESSION NO				
TINT Equivalency of Composition A5. Final Repert. C. PERFORMING ORG. REPORT NUMBER G. M.	TINT Equivalency of Composition A5. Final Report. C. PERFORMING ORG. REPORT NUMBER J. Moroney Project Leader, ARRADCOM W. /Badowski Project Engineer, ARRADCOM MIPR-816868/218/15485 10. PROGRAM ENGINETT NUMBER(s) ARRADCOM Resident Departations Office N.S. T.L. Station, Mississippi 395/29 U. S. ARRADCOM, LCWSL W. S. ARRADCOM, LCWSL U. S. ARRADCOM, LCWSL WONLING OFFICE NAME A ADDRESS (I different from Controlling Office) U. S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, N.J. 07801 S. DECLASSIFICATION/DOWNGRADING W. D. STRIBUTION STATEMENT (of this Report) AD-E-4000 AD-E-4000 JAN 22 1979 JAN 22 1979 Composition A5 Peak side-on pressure Scaled distance Geometric configuration A. ABETRACT (Continue on reverse alde If necessary and Identity by block number) Peak side-on pressure Scaled distance Geometric configuration A. ABETRACT (Continue on reverse alde If necessary and Identity by block number) A. ABETRACT (Continue on reverse alde If necessary and Identity by block number)	ARLCD-TR-78018					
6. PERFORMING ORG. REPORT NUMBER G. L. M.	G.V. MCKown and F.L. McIntyre, NASA J. Moroney Project Leader, ARRADCOM W. Badowski Project Engineer, ARRADCOM W. Badowski Project Engineer, ARRADCOM MIPR-81686Ø21Ø1F4W5/ S. PERFORMING ONGANIZATION NAME AND ADDRESS ARRADCOM Resident Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 II. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATIN: DRDAR-TSS DOVER, NJ 07801 M. MONITORING AGENCY NAME A ADDRESS/II ditional from Controlling Office) W.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATIN: DRDAR-LCM-SP DOVER, NJ 07801 M. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited (1) AFLL J.	4. TITLE (and Subtitle)		5. TYPE OF REPORT A BERNOD COVERE			
8. PERFORMING ORG. REPORT NUMBER G.N. M.	S. PERFORMING ORG. REPORT NUMBER C. M.	TNT Equivalency of Composition	on A5 / (//)	Final Report			
G.V. McKown and F.L. McIntyre, NASA J. Moroney Project Leader, ARRADCOM W. Badowski Project Leader, ARRADCOM MIPR-8168602101F4W5/ PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident: Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM, LCWSL Project 5764285 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS DOVER, N.J. 07801 1. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, N.J. 07801 6. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) AD-E-1000 AD-E-1000 JAN 22 1979 1. KEY WORDS (Continue on reverse side II necessary and identity by block number) Composition A5 TNT equivalency Scaled distance	G. L. MCKOWIN and F. L. I McIntyre, NASA J. Moroney Project Leader, ARRADCOM W. Badowski Project Engineer, ARRADCOM W. Badowski Project Engineer, ARRADCOM W. Badowski Project Engineer, ARRADCOM MIPR-8168682181F4W5 Performing organization name and address ARRADCOM Resident Operations Office NASA National Space Technology Laboratories N.S. T. L. Station, Mississippi 39529 I. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS DOVER, NJ 07801 U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP DOVER, NJ 07801 S. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. I. DISTRIBUTION STATEMENT (of the abatract entered in Black 20, 11 different from Report) D. DISTRIBUTION STATEMENT (of the abatract entered in Black 20, 11 different from Report) Composition A5 Peak side-on pressure Scaled distance Geometric configuration ARRACCOM to Continue on reverse side If necessary and identify by block number) Peak side-on pressure Scaled distance Geometric configuration	The second secon					
PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM RESIDENT Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS DOVEY, N.J. 07801 14. MONITORING ACENCY NAME & ADDRESS(II diliterant from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP DOVEY, N.J. 07801 15. SECURITY CLASS. (of this report) DOVEY, N.J. 07801 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 19. DECLASSIFICATION/DOWNGRADIN TO DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report) D. D. C. DISTRIBUTION ASTATEMENT (of the abstract entered in Black 20, II different from Report)	PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS DOVEY, N.J. 07801 1. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, N.J. 07801 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 1. DISTRIBUTION STATEMENT (of this abstract entered in Black 20, II different from Report) D. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Peak side-on pressure Scaled positive impulse AMERICA WORDS (Continue on reverse attle II necessary and Identify by block number) AMERICA WORDS (Continue on reverse attle II necessary and Identify by block number) AMERICA WORDS (Continue on reverse attle II necessary and Identify by block number) AMERICA WORDS (Continue on reverse attle II necessary and Identify by block number)			B. PERFORMING ONG. REPORT NUMBER			
PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 N.S.T.L. Station, Mississippi 39529 Project 5764285 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM, LCWSL WATTN: DRDAR-TSS DOVEY, NJ 07801 12. REPORT DATE September 1978 13. REPORT DATE September 1978 14. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP DOVEY, NJ 07801 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADIN	PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM RESIDENT Departions Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 10. PROGRAM ELEMENT, PROJECT, TAX ARRADCOM, LCWSL N.S.T.L. Station, Mississippi 39529 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS Dover, N.J. 07801 12. REPORT DATE September 1878 13. NEW MORD DATE September 1878 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, N.J. 07801 16. DISTRIBUTION STATEMENT (of the Abetract entered in Black 20, II different from Report) AD-E-100 AD-E-100 AD-E-100 AD-E-100 AD-E-100 AD-E-100 AD-E-100 AD-E-100 ANN 22 1979 S. KEY WORDS (Continue on reverse side If necessary and Identify by block number) Peak side—On pressure Scaled positive impulse Geometric configuration A. ABSTRACT (Continue on reverse side M necessary and Identify by block number) A. ABSTRACT (Continue on reverse side M necessary and Identify by block number)	G.L. McKown and F.L. McIntyre	NASA	8. CONTRACT OR GRANT NUMBER(#)			
PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 II. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM, LCWSL WITH MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 III. DISTRIBUTION STATEMENT (of this Report) APPROVED TO THE MONITORING STATEMENT (of this abstract entered in Block 20, If different from Report) D D C SELECTION OF REPORT OF	S. PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM Resident Deparations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 10. PROGRAM ELEMENT, PROJECT, TAX ARRADCOM, LCWSL N.S.T.L. Station, Mississippi 39529 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TS DOVER, N.J. 07801 12. REPORT DATE September 1878 13. NEW MEN OF FREES 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverce side If necessary and identify by block number) Peak side—On pressure Scaled positive impulse 10. PROGRAM ELEMENT, FROJECT, TAX ARRADCOM, LCWSL Project 5764285 12. REPORT DATE September 1878 12. REPORT DATE September 1978 13. NECESSIFICATION OFFICES 14. NONITORING OFFICE NAME AND ADDRESS 15. NEW WORDS (Continue on reverce side If necessary and identify by block number) 15. NET WORDS (Continue on reverce side If necessary and identify by block number) 16. ABSTRACT (Continue on reverce side If necessary and identify by block number)	J. Moroney Project Leader, A	TRRADCOM (15)				
ARRADCOM Resident: Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 III. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS Dover, NJ 07801 III. MONITORING AGENCY NAME & ADDRESS(II diliterant from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 III. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. III. DISTRIBUTION STATEMENT (of the abeliact entered in Black 20, II different from Report) III. DISTRIBUTION STATEMENT (of the abeliact entered in Black 20, II different from Report) III. Supplementary notes Peak side-on pressure Scaled distance	ARRADCOM. Resident: Operations Office NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 III. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM. ATTN: DRDAR-TSS DOVER, NJ 07801 III. MONITORING AGENCY NAME a ADDRESS(II diliterant from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 III. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. III. DISTRIBUTION STATEMENT (of this abstract entered in Block 20, II different from Report) IV. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) DD C IV. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) DD C SCALED STATEMENT (of the abstract entered in Block 20, II different from Report) SCALED STATEMENT (of the abstract entered in Block 20, II different from Report) B Composition A5 Peak side-on pressure Scaled distance Scaled positive impulse Geometric configuration	W./Badowski) Project Engineer	, ARRADCOM	MIPR-816B6Ø21Ø1F4W5/			
NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 ARRADCOM, LCWSL Project 5764285 12. REPORT DATE Sep 16 78 ATTN: DRDAR-TSS Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15. SECURITY CLASS. (of this report) UNCLASSIFIED UNCLASSIFIED 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) DD C JAN 22 1979 S. KEY WORDS (Continue on reverse side If necessary and Identify by block number) Peak side-on pressure Scaled distance	NASA National Space Technology Laboratories N.S.T.L. Station, Mississippi 39529 ARRADCOM, LCWSL Project 5764285 12. GOTTPOLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS DOVEY, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP DOVEY, NJ 07801 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side If necessary and identify by block number) Peak side-on pressure Scaled distance Geometric configuration 6. ABSTRACT (Continue on reverse abds M necessary and identify by block number) 6. ABSTRACT (Continue on reverse abds M necessary and identify by block number)	PERFORMING ORGANIZATION NAME AND A	DORESS	10. PROGRAM ELEMENT, PROJECT, TASI			
N.S.T.L. Station, Mississippi 39529 Project 5764285 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS Dover, NJ 07801 1. MONITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 1. DRDAR-LCM-SP Dover, NJ 07801 1. DRDAR-LCM-SP IS. SECURITY CLASS. (of this report) UNCLASSIFIED 1. DECLASSIFICATION/DOWNGRADIN 1. D	N.S.T.L. Station, Mississippi 39529 Project 5764285 1. CONTROLLING OFFICE NAME AND ADDRESS U.S. ARRADCOM ATTN: DRDAR-TSS DOVER, NJ 07801 1. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP DOVER, NJ 07801 1. DECLASSIFICATION/DOWNGRADING 1. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 1. DECLASSIFICATION/DOWNGRADING 1. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 3. KEY WORDS (Continue on reverse side If necessary and Identify by block number) Peak side—on pressure Scaled distance Geometric configuration Scaled positive impulse Scaled distance Geometric configuration	NASA NATIONAL SDACE LECHNOLOG	NOA NATIONAL SDACE LECHNOLOGY LABORATORIES				
ATTN: DRDAR-TSS Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office) 15. SECURITY CLASS. (of this report) 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Peak side-on pressure Schedule 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Peak side-on pressure Scaled distance	ATTN: DRDAR-TSS Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15. DECRIFY CLASS. (of this report) UNCLASSIFIED 15. DECRIFY CLASS. (of this report) UNCLASSIFIED 15. DECRIFY CLASS. (of this report) INCLASSIFIED 15. DECRIFY CLASS. (of this report) AD-E-1000 BE S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Peak side—on pressure Scaled distance Geometric configuration ABSTRACT (Continue on reverse side if necessary and identify by block number) BE ABSTRACT (Continue on reverse side if necessary and identify by block number)	N.S.T.L. Station, Mississippi					
ATTN: DRDAR-TSS Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15. DECLASSIFIED 15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Peak side-on pressure Scaled distance	ATTN: DRDAR-TSS Dover, NJ 07801 15. HUMBER OF FAGES 19. SECURITY CLASS, (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING 15c. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 19. Tr 1 AD - 1 A	IL CONTROLLING OFFICE NAME AND ADDRE	55	12. REPORT DATE			
Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) 16. UNCLASSIFIED 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number) 19. Peak side-on pressure Scaled distance	Dover, NJ 07801 15. SECURITY CLASS. (of this report) U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) 18. SUPPLEMENTARY NOTES S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Peak side-on pressure Scaled positive impulse G. ABSTRACT (Continue on reverse side if necessary and identify by block number) G. ABSTRACT (Continue on reverse side if necessary and identify by block number)	U.S. ARRADCOM	- Dr. (11)				
U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15. SECURITY CLASS. (of this report) INCLASSIFIED INCLASSIFIED ISA. DECLASSIFICATION/DOWNGRADIN ISA. DECLASSIFICATION/DOWNG	U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15. DECLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 15a. DECLASSIFICATION/DOWNGRADING 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 15a. DECLASSIFICATION/DOWNGRADING 15b. DECLASSIFICATION/DOWNGRADING 15b. DECLASSIFICATION/DOWNGRADING	4.15/11/ 133					
U.S. ARRADCOM, LCWSL Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15e. DECLASSIFICATION/DOWNGRADIN 16e. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, If different from Report) 17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, If different from Report) 17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, If different from Report) 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number) 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number) 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number) 20. SUPPLEMENTARY NOTES 21. SUPPLEMENTARY NOTES 22. SUPPLEMENTARY NOTES 23. SUPPLEMENTARY NOTES 24. SUPPLEMENTARY NOTES 25. SUPPLEMENTARY NOTES 26. SUPPLEMENTARY NOTES 26. SUPPLEMENTARY NOTES 26. SUPPLEMENTARY NOTES 27. SUPPLEMENTARY NOTES 26. SUPPLEMENTARY NOTES 27. SUPPLEMENTARY NOTES 28. SUPPLEMENTARY NOTES 29. SUPPLEMENTARY NOTES 29. SUPPLEMENTARY NOTES 29. SUPPLEMENTARY NOTES 20. SUPPLEMENTARY N	UNCLASSIFIED Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 15a. DECLASSIFICATION/DOWNGRADING AD-E-1/OV AD-E-1/OV AD-E-1/OV AD-E-1/OV AD-E-1/OV AD-E-1/OV JAN 22 1979 JAN 22 1979 S. KEY WORDS (Continue on reverse side If necessary and Identity by block number) Peak side—on pressure Scaled distance Geometric configuration C. ABSTRACT (Continue on reverse atth M necessary and Identity by block number)	14. MONITORING AGENCY NAME & ADDRESS(II	different from Controlling Office)	<u> </u>			
Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 15a. DECLASSIFICATION/DOWNGRADIN 15a. DECLASSIF	Manufacturing Tech Div, ATTN: DRDAR-LCM-SP Dover, NJ 07801 Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE ISA. DECLASSIFICATION/DOWNGRADING ISA. DECLASSIFICATION/DOWNGRADING ISA. DECLASSIFICATION/DOWNGRADING AD - E-1/OU J-1 AD - E-1/OU J-1 ISA. DECLASSIFICATION/DOWNGRADING AD - E-1/OU J-1 ISA. DECLASSIFICATION/DOWNGRADING ISA. DECLASSIFICA			}			
Approved for public release; distribution unlimited. Approved for public release; distribution unlimi	Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. AD-E-4000 AD-E-4000 TR1-401 AD-E-4000 AD-E-4000 TR1-401 AD-E-4000 AD-E-4000 AD-E-4000 TR1-401 AD-E-4000 AD-E-4000 TR1-401 AD-E-4000 AD-E-4000 AD-E-4000 TR1-401 TR1-401 AD-E-4000 TR1-401 TR1-401 AD-E-4000 TR1-401 AD-E-4000 TR1-401 TR	Manufacturing Tech Div, ATTN:	nufacturing Tech Div, ATTN: DRDAR-LCM-SP				
Approved for public release; distribution unlimited. 19 TR - 1700 17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 20. Composition A5 21. Peak side-on pressure 22. Scaled distance	Approved for public release; distribution unlimited. (1) ARL D. TR-1/400 AD-E-1/00 AD-E-1/00 AD-E-1/00 AD-E-1/00 DDC (1) ARL D. J.	Dover, NJ 07801		SCHEDULE SCHEDULE			
JAN 22 1979 B Composition A5 Peak side-on pressure TNT equivalency Scaled distance	JAN 22 1979 B Composition A5 Peak side-on pressure Scaled distance Scaled positive impulse Geometric configuration CO. ABSTRACT (Continue on reverse abbut M recessary and identity by block number)	7	, , , , , , , , , , , , , , , , , , , ,				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composition A5 Peak side-on pressure TNT equivalency Scaled distance	JAN 22 1979 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composition A5 Peak side-on pressure TNT equivalency Scaled distance Scaled positive impulse Geometric configuration	17. DISTRIBUTION STATEMENT (of the abetract	, , , , , , , , , , , , , , , , , , , ,				
JAN 22 1979 JAN 22 1979 JAN 22 1979 S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composition A5 Peak side-on pressure TNT equivalency Scaled distance	JAN 22 1979 S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composition A5 Peak side-on pressure Scaled distance Scaled positive impulse Geometric configuration ABSTRACT (Continue on reverse side if necessary and identify by block number)	7. DISTRIBUTION STATEMENT (of the abetract	, , , , , , , , , , , , , , , , , , , ,				
S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composition A5 Peak side-on pressure TNT equivalency Scaled distance	9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Composition A5 Peak side-on pressure TNT equivalency Scaled distance Scaled positive impulse Geometric configuration C. ABSTRACT (Continue on reverse side if necessary and identify by block number)	/ 17. DISTRIBUTION STATEMENT (of the abetract	, , , , , , , , , , , , , , , , , , , ,				
Composition A5 Peak side-on pressure TNT equivalency Scaled distance	Composition A5 Peak side-on pressure Scaled distance Scaled positive impulse Geometric configuration Co. ABSTRACT (Courthure on reverse able M necessary and identity by block number)		, , , , , , , , , , , , , , , , , , , ,				
Composition A5 Peak side-on pressure TNT equivalency Scaled distance	Composition A5 Peak side-on pressure Scaled distance Scaled positive impulse Geometric configuration CO. ABSTRACT (Continue on reverse olds N recessary and identity by block number)		, , , , , , , , , , , , , , , , , , , ,	D D C			
Composition A5 Peak side-on pressure TNT equivalency Scaled distance	Composition A5 Peak side-on pressure Scaled distance Scaled positive impulse Geometric configuration Co. ABSTRACT (Courthure on reverse able M necessary and identity by block number)		, , , , , , , , , , , , , , , , , , , ,	D D C			
TNT equivalency Scaled distance	TNT equivalency Scaled distance Scaled positive impulse Geometric configuration 10. ABSTRACT (Continue on reverse olds N recessary and identity by block number)	18. SUPPLEMENTARY NOTES	entered in Black 20, II different fro	DDC JAN 22 1979 LUCIUUS			
Scaled positive impulse Geometric configuration	Q. ABSTRACT (Cauthace am reverse atds H reservacy and identity by block number)	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side If nece	entered in Black 20, if different fro	DDC JAN 22 1979 LUCIULE B			
	· · · · · · · · · · · · · · · · · · ·	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if nece Composition A5	entered in Black 20, it different from the secry and identify by block number) Peak side-on pre-	DDC JAN 22 1979 LUCIUL B			
•	20. ABSTRACT (Cauthure an reverse able H necessary and identify by block number)	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if nece	entered in Black 20, II different fro	DDC JAN 22 1979			
Peak blast overpressure and scaled positive blast impulse have been measure for Composition A5, using configurations that simulate bulk handling of materials	THE LANGEST OF ME IN 180 CONTINUESTICHE TRAT CIMILATA BUILD BEGGIOGE AS	19. KEY WORDS (Continue on reverse side if nece Composition A5 TNT equivalency Scaled positive impulse 20. ABSTRACT (Continue on reverse side N neces	Peak side-on prescaled distance Geometric configuration and identity by block number) Peak side-on prescaled distance Geometric configuration and identity by block number) and scaled positive block	D D C JAN 22 1979 Ssure uration ast impulse have been measure			
for Composition A5—using configurations that simulate bulk handling of materi	during processing and shipment. Quantities of 11.34. 22.7. and 27.22 kg (25	19. KEY WORDS (Continue on reverse side if nece Composition A5 TNT equivalency Scaled positive impulse 20. ABSTRACT (Continue on reverse side if nece impulse) Peak blast overpressure are for Composition A5 using confi	Peak side-on prescaled distance Geometric configurations that simulations that simulations are simulated to the simulations that simulations that simulations that simulations that simulations the simulations the simulations that simulations the simulations that simulations the simulations that simulations the simulations that simulations	DDC JAN 22 1979 Ssure uration ast impulse have been measurate bulk handling of materia			
for Composition A5—using configurations that simulate bulk handling of materi Juring processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes. and	Juring processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and	19. KEY WORDS (Continue on reverse side If nece Composition A5 TNT equivalency Scaled positive impulse 19. ABSTRACT (Continue on reverse atto M necessary) Peak blast overpressure are for Composition A5 using confiduring processing and shipment and 60 lb, respectively) were	Peak side-on prescary and identify by block number) Peak side-on prescaled distance Geometric configurations that simulated in orthorhombic dested in orthorhombic	JAN 22 1979 JAN 22 1979 B Ssure Ast impulse have been measurate bulk handling of material, 22.7, and 27.22 kg (25, 9) of fiberboard boxes, and			
for Composition A5 using configurations that simulate bulk handling of materi during processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explos	during processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explos	19. KEY WORDS (Continue on reverse side if nece Composition A5 TNT equivalency Scaled positive impulse Peak blast overpressure ar for Composition A5 using confiduring processing and shipment and 60 lb, respectively) were 68.04 kg (150 lb) were detonate	Peak side-on prescary and identify by block number) Peak side-on prescaled distance Geometric configurations that simulated in cylindrical fibe	JAN 22 1979 JAN 22 1979 B Ssure Ast impulse have been measurate bulk handling of material, 22.7, and 27.22 kg (25, 5) of therboard boxes, and er containers. High-explosion			
for Composition A5 using configurations that simulate bulk handling of materiduring processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explosequivalency values for each test series were obtained as a function of scaled	during processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explosequivalency values for each test series were obtained as a function of scaled	19. KEY WORDS (Continue on reverse eide if nece Composition A5 TNT equivalency Scaled positive impulse Peak blast overpressure are for Composition A5 using confiduring processing and shipment and 60 lb, respectively) were detonated equivalency values for each test	Peak side-on prescary and identify by block number) Peak side-on prescaled distance Geometric configurations that simulated in cylindrical fibest series were obtained.	JAN 22 1979 JAN 22 1979 B Ssure Aration Ast impulse have been measurate bulk handling of material, 22.7, and 27.22 kg (25, 25 fiberboard boxes, and 27 containers. High-explosed as a function of scaled			
for Composition A5 using configurations that simulate bulk handling of materiduring processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explosequivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characterisms.	during processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explosequivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characteris	19. KEY WORDS (Continue on reverse side if nece Composition A5 TNT equivalency Scaled positive impulse 19. ABSTRACT (Continue on reverse side if nece impulse) 19. ABSTRACT (Continue on reverse side if nece impulse) 19. ABSTRACT (Continue on reverse side if nece impulse) 19. ABSTRACT (Continue on reverse side if nece impulse) 19. ABSTRACT (Continue on reverse side if nece impulse) 19. KEY WORDS (Continue on reverse side if nece impulse) 19. KEY WORDS (Continue on reverse side if nece impulse 10. ABSTRACT (Continue on reverse side impulse 10. ABSTRACT (Continue on reve	Peak side-on prescary and identify by block number) Peak side-on prescaled distance Geometric configurations that simulated in cylindrical fibest series were obtained pressure, arrival to	JAN 22 1979 JAN 22 1979 B ssure uration ast impulse have been measurate bulk handling of material, 22.7, and 27.22 kg (25, 5); fiberboard boxes, and er containers. High-explosited as a function of scaled lime and impulse characteristics.			
for Composition A5—using configurations that simulate bulk handling of materiduring processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explosequivalency values for each test series were obtained as a function of scaled	during processing and shipment. Quantities of 11.34, 22.7, and 27.22 kg (25, and 60 lb, respectively) were tested in orthorhombic fiberboard boxes, and 58.04 kg (150 lb) were detonated in cylindrical fiber containers. High-explose equivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characteristics for hemispherical TNT surface bursts. The equivalencies were found to proceed the series were series were found to proceed the series were series we	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if nece Composition A5 TNT equivalency Scaled positive impulse 10. ABSTRACT (Continue on reverse elde if nece Peak blast overpressure ar for Composition A5 using confiduring processing and shipment and 60 lb, respectively) were in the sequivalency values for each test distance by comparison to known tics for hemispherical TNT surface.	Peak side-on prescaled distance Geometric configurations that simulates of 11.34 tested in cylindrical fibest series were obtained pressure, arrival trace bursts. The equipment of the configurations of 11.34 tested in cylindrical fibest series were obtained pressure, arrival trace bursts. The equipment of the cylindrical fibest series were obtained the cylindrical fibest series. The equipment of the cylindrical fibest series were obtained the cylindrical fib	JAN 22 1979 JAN 22 1979 B Ssure Aration Ast impulse have been measure ate bulk handling of materia 1, 22.7, and 27.22 kg (25, 5) 3 fiberboard boxes, and ar containers. High-explosive as a function of scaled ime and impulse characteris- ivalencies were found to			

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

depend significantly on scaled distance with higher values (140 to 500%) at the extremes within the range from 1.19 to 15.87 m/kg $^{1/3}$ (3 to 40 ft/lb $^{1/3}$,) respectively). Equivalencies as low as 100% were obtained at intermediate distances. Within experimental error, both peak overpressure and positive impulse scaled as a function of charge weight for all quantities tested in the orthorhombic configuration.

A.

m/cube rt. (Kg) ((3 to 40 ft/cube rt. (16)

UNCLASSIFIED

TABLE OF CONTENTS

	Page No.
Summary	I
Introduction	1
Experimental Methods	2
Materials Instrumentation	2 3
Results	4
Data Analysis Test Results Discussion	4 6
Conclusions	6
References	7
Appendixes	
A Test Data Sheets, TNT Equivalency of Composition A5	27
B Selected Photographs	45
Symbols and Abbreviations	51
Distribution List	53

ACCESSION for	
NTIS DDC UNANHOUR CED	White Section Buff Section D
EST FICATION	
V9	AND MUTT CODES
Dist	Pal of SPLCIAL
A	

TABLES

No.		Page No.		
1	Composite TNT equivalency by container configuration	8		
2	Transducer calibration and placement	8		
3	Summary of test results 11.34 kg (25 lb) charges	9		
4	Summary of test results 22.68 kg (50 lb) charges	9		
5	Summary of test results 27.22 kg (60 lb) charges	10		
6	Summary of test results 68.04 kg (150 lb) charges	10		
7	Fireball duration and diameter	11		
	FIGURES			
1	Composition A5 containers	12		
2	Composite pressure and impulse vs scaled distance	13		
3	Composite TNT equivalency for orthorhombic configuration			
4	Composite TNT equivalency for cylindrical configuration			
5	Test container configurations			
6	Typical charge placement for equivalency tests			
7	Test area showing transducer and camera placement	17		
8	Pressure and impulse vs scaled distance, 11.34 kg (25 lb) charges	18		
9	Pressure and impulse vs scaled distance, 22.68 kg (50 lb) charges	19		
10	Pressure and impulse vs scaled distance,	20		

No.		Page No.
11	Pressure and impulse vs scaled distance, 68.04 kg (150 lb) charges	21
12	Pressure and impulse TNT equivalencies. 11.34 kg (25 lb) charges	22
13	Pressure and impulse TNT equivalencies, 22.68 kg (50 lb) charges	23
14	Pressure and impulse TNT equivalencies, $27.22\ k_{\rm S}$ (60 lb) charges	24
15	Pressure and impulse TNT equivalencies, 68.04 kg (150 lb) charges	25

SUMMARY

Composition A5 high explosive, Type I, MIL-E-14970A(MU) was detonated in configurations representative of an orthorhombic shipping box, a simulated in-plant conveyor bucket, and a cylindrical shipping drum. Blast output parameters were measured and TNT equivalency was computed based on comparison with TNT hemispherical surface bursts. The tests and the results are presented in table 1 and in figures 1, 2, 3 and 4. Within the boundaries of experimental error, the pressures and impulses from the orthorhombic configurations scaled with the cube root of the charge weight. The cylindrical charge configuration shows the same general characteristics as the orthorhombic configuration except that blast pressures and pressure equivalencies are higher in the intermediate scaled distances.

INTRODUCTION

As part of the US Army Munitions Production Base Modernization and Expansion Program, Project 5763142 covers the layout and design of a Load, Assemble, and Pack (LAP) line for grenades to be used in Improved Conventional Munitions (ICM). Although building and equipment designs are not final, it is already known that bulk quantities of the explosive component, Composition A5, ranging from 11.34 (25 lb) to 2700 kg (5950 lb), will be found at various points in the LAP line. Composition A5 will be received in unit quantities of 11.34 kg (25 lb) to 68.0 kg (150 lb) and stored in Stradley igloos. The material will be screened, weighed in 11.34 kg (25 lb) increments, and transferred via bucket conveyor to pressing bays within the grenade-body loading building.

Safety engineering and cost effectiveness require that hazardous material characteristics be considered as input to facility design. In this instance, specific data are required on the explosive output characteristics of Composition A5 in quantities and configurations representative of the processing environment.

The purpose of Project 5763142 is to:

- 1. Experimentally determine the maximum airblast output; peak overpressure and positive impulse of Composition A5 explosive in specific configurations and in the processing of environment.
- 2. Determine the TNT equivalencies of the A5 explosive by comparing its measured pressure and positive impulse with those

produced by the detonation of an unconfined ground burst of a hemispherical charge of TNT.

EXPERIMENTAL METHODS

Materials

The test material was Composition A5, Type I, high explosive (MIL-E-14970A (MU), 6 September 1970, with amendment, lot No. HOL-015-73), containing 98.5 to 99.0% RDX and 1.0 to 1.5% stearic acid. The explosive was received from Holston Army Ammunition Plant in standard shipping boxes with a net weight of 27.2 kilograms.

Test Plan

Airblast output was evaluated for weights and configurations of Composition A5 representative of three shipping and in-plant situations. Physical characteristics of the test items were as follows:

- 1. An orthorhombic container (fig. 5a) was used to simulate the conveyor bucket and serve as a scaled version of the standard shipping box with a linear dimensional scaling factor of 0.80. Two-piece telescoping fiberboard boxes were fabricated and filled with 11.34 kg (25 lb) of Composition A5.
- 2. A second orthorhombic container (fig. 5b) consisting of the original shipping box was also used to house test material. Tests were performed using 22.68 kg (50 lb), as originally planned, and 27.22 kg (60 lb) charge weights in this configuration. The latter figure approximates the actual shipping weight.
- 3. In addition to the two orthorhombical containers, a cylindrical fiber shipping drum (fig. 5c) containing 68.04 kg (150 lb) of explosive was tested also.

A conical-shaped booster charge of Composition C4 high explosive was centered in the top of each container and buried with the apex level with the top surface of the test material (fig. 5d). The booster was detonated with an engineer's special J2 blasting cap inserted at the apex and embedded in the center of the cone. A single test of each configuration was performed using a booster equal to 0.05% by weight of the test charge, for which subsequent data analysis showed slightly lower blast pressures than were observed in the case of 1% boosters. Since the TNT equivalent weight of Composition C4 is insignificant during data analysis, assurance of complete detonation

dictated the use of 1% booster weights in all subsequent tests. From three to five tests were performed at each specified charge weight.

The test charge for each configuration was placed on a 1010 carbon steel witness plate 0.61~m (2 ft) by 0.61~m (2 ft) by 0.0064~m (0.2 ft) thick in the center of the test area (fig. 6). The diameter and depth of the crater were measured and the area was refurbished.

Instrumentation

Twelve Susquehanna Instruments Model ST-7 side-on blast transducers were mounted in wooden blocks and placed at ground level in two arrays in the test area shown in figure 7. Distances between transducers and charge were calculated to correspond to scaled distances of 1.19, 1.61, 2.13, 3.57, 7.14, and 15.87 meter/kgl/3 (3, 4.04, 5.38, 9, 18 and 40 ft/lbl/3, respectively). The transducers were individually calibrated prior to each test series with quasistatic pressure pulses using a standard solenoid-actuated air pressure calibration fixture, adjusted to correspond to expected blast pressures based on an assumed TNT equivalency of 100%. This calibration was verified initially by measuring free-field blast pressures from 0.45 kg (1 lb) bare spherical charges of 50/50 pentolite. Signal line continuity and channelization were checked prior to each test. Details of distances between charge and transducers, calibration pressures, and expected peak blast pressure at each distance are shown in table 2.

Each transducer was connected to an underground coaxial cable system which leads through a dirt bunker and into the instrumentation building, approximately 183 m (600 ft) from the test area. All signals were amplified by Dynamic 6457 units and recorded on a 14-track Sangamo Model 4700 tape recorder at 60 inches per second, along with an initial timing signal from a breakwire placed on the charge and 1.00 kHz timing pulses. The nominal response (-3dB) for this recording system is 80 kHz. Data from Channels 1, 2, 7 and 8 (i.e., the closest transducers) were simultaneously recorded in parallel on a Honeywell Model 96 recorder (500 kHz response) operated at 120 inches per second. Data from the magnetic tapes, read at 19.05 cm (.625 ft) per second, was outputted to a Honeywell Model 1612 oscillograph operated at 101.6 cm (3.33 ft) per second.

Photographic coverage was restricted to the last test of each configuration, (fig. 7). Motion picture coverage included two Hycam Model 41.004 units operated at 4000 frames per second (fps) and one Mitchell camera at 24 fps. Fiducial markers in the field of view with 3.05 meter (10 ft) spacing aided in determination of fireball diameter. Standard meteorological data recorded for each test.

RESULTS

Data Analysis

Peak blast overpressure, time of arrival, and scaled positive impulse information were obtained in direct analog form from the oscillograph records. After exclusion of poor results that could be attributed to instrumentation malfunction, impingement of fragments on the transducer elements, or improper calibration, maximum values for peak pressure and scaled positive impulse were calculated for each weight and scaled distance.

The maximum peak pressures were compared directly with standard reference curves for hemispherical TNT surface bursts (ref. 1) to derive TNT equivalency (E_p) as a percentage by weight based on equivalent side-on blast pressure at equal distances from the charge:

$$E_{p} = 100 \underbrace{\begin{bmatrix} W_{TNT} \\ W_{A5} \end{bmatrix}}_{constant} = 100 \underbrace{\begin{bmatrix} Z_{A5}^{3} \\ Z_{TNT}^{3} \end{bmatrix}}_{constant}$$

$$\underbrace{\begin{bmatrix} Z_{A5}^{3} \\ Z_{TNT}^{3} \end{bmatrix}}_{constant}$$

where W is the weight of explosive, Z is scaled distance, P is the peak blast pressure, and the subscripts refer to the explosive material.

Calculation of TNT impulse equivalency from maximum scaled positive impulse data (I_{A5}) required use of a method similar to that of Swatosh and Cook (ref. 2). The scaled impulse I_{TNT} from TNT hemispheres (I) is given (in metric units) to within experimental uncertainty, by the equation

$$log ITNT = -0.900 log ZTNT + 5.52$$
 (2)

or
$$I_{TNT} = 250/Z_{TNT}^{0.900}$$
 (3)

For equal impulses and distances, it is required that

$$\log ITNT - \log IA5 = \log ZTNT - \log ZA5 \tag{4}$$

The equivalent scaled distance for TNT charges is obtained from A5 impulse data by combining equations (2) and (4):

$$Z_{TNT} = \left(\frac{250 \ Z_{A5}}{I_{A5}}\right)^{0.526}$$
 (5)

The TNT impulse equivalency (E_I) is then obtained from a relation similar to equation (1):

$$E_{I} = 100 \begin{bmatrix} \frac{7}{A5}^{3} \\ \frac{7}{ZTNT}^{3} \end{bmatrix}$$
 constant impulse (6)

Use of this equation eliminates the need for construction plots on log-log graphs.

This method linearizes TNT impulse data below the point of slope reversal by extrapolation of values from greater scaled distances. Thus hypothetical equivalency values are obtained below scaled distances of about 1.9 m/kg $^{1/3}$ (4.8 ft/lb $^{1/3}$). However, the method does avoid complete neglect of impulse equivalency at small scaled distances due to the discontinuities produced during point-by-point analysis (ref. 3).

An analysis of contributions to the measured peak pressure and impulse showed that the weight of booster material used for these tests is insignificant. To a first approximation, the TNT equivalencies of the C4 booster and the A5 explosive were assured equal, i.e., the actual explosive charge weight is the sum of the booster and test material. Neglect of the booster then corresponds to an error of 1% in weight of explosive and a maximum error of 0.33% in scaled distance. Uncertainties of this magnitude produce corresponding errors in pressure and impulse that are considerably below the standard deviation of reference tables (ref. 1) and are an order of magnitude less than experimental errors in normal blast measurements. The same conclusion is obtained for any reasonable assumption concerning the actual equivalency of the booster material; the contribution may be totally neglected for booster weights on the order of 1%, test material equivalencies in the range of 50 to 300%, and scaled distances in the range of 1 to $16 \text{ m/kg}^{1/3}$ (2.52 to $40 \text{ ft/lb}^{1/3}$).

Tancreto (ref. 3) has observed that attenuation of peak pressure and impulse due to limited recording system frequency response becomes significant for measurements at small-scaled distances. However, comparison of several records from the Sangamo and Honeywell

instruments revealed no significant differences, and the Sangamo data were primarily used for subsequent computations.

Test Results

Test data sheets for all tests with pertinent measured parameters are given in Appendix A. Selected pretest and post-test still photographs are given in Appendix B. Test numbers shown are for local reference only and provide access to original range data files.

Maximum pressure, scaled positive impulse, and TNT equivalencies are summarized by test configuration in tables 3 through 6 and figures 8 through 15. Fireball duration and diameter as measured from the high-speed motion pictures are given in table 7.

Discussion

The plots of peak pressure versus scaled distance (figs. 8 through 10) from the orthorhombic container tests show the same general trend that has observed in recent TNT equivalency determinations on other explosive and propellant materials (refs. 2-5). Compared to corresponding TNT surface bursts, the observed pressures are higher at far and near field, Z = 8 m/kg $^{1/3}$ (20 ft/lb $^{1/3}$) and at near field, Z = 3 m/kg $^{1/3}$ (7.5 ft/lb $^{1/3}$) with lower values at intermediate distances. Results of the cylindrical shipping drum tests (fig. 11) show the same general characteristics, although pressures are everywhere greater than those of the referenced material and generally higher than that of the other configurations of A5. Impulse versus distance data show similar tendencies to those obtained for peak pressures.

Essentially S-shaped TNT equivalency curves (figs. 12 thru 15) were obtained by use of maximum data. The composite data (see Summary) show that both pressure and impulse scales with the cube root of charge weight for all tests of the orthorhombic boxes. The difference between impulse equivalency for the cylindrical and orthorhombic cases is not significant, but the pressure equivalency is markedly higher for the large cylindrical tests except at the extremes of scaled distance.

CONCLUSIONS

The TNT equivalency of Composition A5 (Type 1) explosive varies significantly with scaled distance and is generally greater than 100%.

Blast pressure and impulse scales with the cube root of charge weight for orthorhombic configurations of the test material.

The explosive yield from a cylindrical configuration is greater between scaled distances of 1.19 and 15.87 m/kg $^{1/3}$ (3 and 40 ft/lb $^{1/3}$) than that from the orthorhombic configurations.

REFERENCES

- 1. C.N. Kingery, "Air Blast Parameters versus Distances for Hemispherical TNT Surface Bursts," BRL Report No. 1314. Aberdeen MD. September 1966.
- 2. J.J. Swatosh, Jr., and J.R. Cook, "TNT Equivalency of M1 Propellant (Bulk)," Technical Report 4885, Picatinny Arsenal, Dover, NJ, December 1975.
- 3. J.E. Tancreto, "TNT Equivalencies of RDX Slurry and Various Geometries of Composition B," Preliminary Report, Picatinny Arsenal, Dover, NJ, May 1975.
- 4. J.J. Swatosh, Jr., and J.R. Cook, "Preliminary Report; Blast Parameters of M26El Propellant," IIT Research Institute, Chicago, IL. January 1976.
- 5. J.J. Swatosh, Jr., and J.R. Cook, "Blast Parameters of M6 Propellant," IIT Research Institute, Final Draft Report J6356-1, Chicago, IL, February 1976.

Table 1. Composite TNT equivalency by container configuration

		PNT Equivalency (4) at Scaled Distance										
Configuration	1, 19 n (3, 0 ft	n ∕kg^{1 ′3} /1b ^{1 /3} i	1.61 n (4.05 f		2, 13 m (5, 38 ft						15, 9 n (40 ft/	ь Ъд ^{1/3} 16 ^{1–3})
	["	1	ì	1	[` r	1	`r `	1	יו	1	1,	1
Orthorhombic Containers	260	.140	290	340	220	160	120	140	1,30	1.20	.345()	160
Cylindrical Shipping Drum	290	.270	500	460	.330	140	190	1.10	.10	Ho	.10	1.10

Table 2. Transducer calibration and placement

				R. Distance in Meters (ft) From Charge					
Channel Number	Scaled Distance m/kg ^{1/3} (ft/th ^{1/3})	Calibration Pressure kPa (psig)	Expected Pressure kPa (psig)	Charge Weight 11,34 kg (25 lb)	Charge Weight 22, 68 kg (50 lb)	Charge Weight 27, 22 kg (60 lb)	Charge Weight 68, 04 (150 lb)		
1,7	t. 19	689.	922	2, 67	3, 37	3, 58	4, 86		
	(3, 0)	(100)	(133, 7)	(8, 77)	(11, 05)	(11, 7)	(15, 9)		
2,8	1.61	414.	468	3.61	4.55	4, 83	6, 56		
	(4.05)	(60)	(67, 9)	(11.84)	(14.9)	(15, 8)	(21, 5)		
3, 9	2, 13	207. 8	246	4, 80	6.04	6, 42	8, 71		
	(5, 38)	(30)	(35, 6)	(15, 73)	(19.8)	(21, 1)	(28, 6)		
1,10	3, 57	68, 9 (10)	81. 5 (11. 8)	8, 02 (26, 32)	10.11 (33, 2)	10, 74 (35, 2)	14, 57 (47, 8)		
5,41	7.14	34, 5	24. 0	16.04	20, 21	21.48	29, 15		
	(18.0)	(5)	(3. 49)	(52.63)	(66, 3)	(70.5)	(95, 6)		
6,12	15, 87	24. 5 (5)	8, 12	35, 64 (117, 0)	44.92 (147.4)	47, 73 (156, 6)	64, 78 (212, 5)		

Table 3. Summary of test results 11.34 kg (25 lb) charges

R meters <u>(ft)</u>	Z m/kg ^{1/3} (ft/1b ^{1/3})	P kPa (psi)	I kPa·ms/kg ^{1/3} (psi·ms/lb ^{1/3})	EP (%)	(%)
2.67 (8.77)	1.19 (3.0)	1720 (250)	380 (42)	250	240
3.61 (11.84)	1.61 (4.05)	970 (240)	320 (35)	290	290
4.80 (15.7)	2.13 (5.38)	410 (60)	180 (20)	210	170
8.02 (26.3)	3.57 (9.0)	76 (11)	100 (11)	110	140
16.04 (52.6)	7.1 4 (18.0)	31 (4.5)	50 (5.5)	170	120
35.7 (117.0)	15.87 (40.0)	13 (1.9)	24 (2.7)	260	130

Table 4. Summary of test results 22.68 kg (50 lb) charges

P meters <u>(ft)</u>	Z m/kg <u>(ft/lb)</u>	p kPa (psi)	$\begin{array}{c} \text{I} \\ \text{kPa·ms/kg}^{1/3} \\ \text{(psi·ms/lb}^{1/3}) \end{array}$	Ep (%)	(%) E1
3.37 (11.1)	1.19 (3.0)	1860 (270)	360 (40)	270	230
4.55 (14.9)	1.61 (4.05)	970 (140)	340 (38)	290	310
6.04 (19.8)	2.13 (5.38)	480 (70)	150 (17)	220	130
10.1 (33.2)	3.57 (9.0)	90 (13)	100 (11)	120	140
20.2 (66.3)	7.14 (18.0)	23 (3.4)	70 (7.8)	100	230
44.9 (147.4)	15.87 (40.0)	12 (1.8)	28 (3.1)	250	160

Table 5. Summary of test results 27.22 kg (60 lb) charges

R meters <u>(ft)</u>	Z m/kg ^{1/3} (ft/lb ^{1/3})	P kPa (psi)	I kPa·ms/kg $^{1/3}$ (psi·ms/ $^{1/3}$)	Ep (%)	E _I (%)
3.58 (11.74)	1.19 (3.0)	1720 (250)	400 (44)	250	270
4.83 (15.8)	1.61 (4.05)	970 (140)	410 (45)	290	430
6.42 (21.1)	2.13 (5.38)	550 (80)	180 (20)	290	170
10.74 (35.2)	3.57 (9.0)	90 (13)	100 (11)	120	140
21.5 (70.5)	7.14 (18.0)	28 (4)	43 (4.8)	130	100
47.7 (156.6)	15.87 (40.0)	12 (1.8)	32 (3.5)	250	200

Table 6. Summary of test results 68.04 kg (150 lb) charges

R meters (ft)	Z m/kg ^{1/3} (ft/lb ^{1/3})	P kPa (psi)	I kPa·ms/kg ^{1/3} (psi·ms/lb ^{1/3})	Ep (%)	E1 (%)
4.86 (15.9)	1.19 (3.0)	2000 (290)	400 (44)	290	270
6.56 (21.5)	1.61 (4.05)	1520 (220)	430 (48)	500	460
8.71 (28.6)	2.13 (5.38)	620 (90)	160 (18)	330	140
14.6 (47.82)	3.57 (9.0)	125 (18)	100 (11)	190	140
29.1 (95.6)	7.14 (18.0)	35 (5.1)	46 (5)	210	110
64.8 (212.5)	15.87 (40.0)	1.1 (1.6)	23 (2.5)	210	120

Table 7. Fireball duration and diameter

Charge Weight kg (lb)	Maximum Fireball Diameter meters (ft)	Fireball Duration msec
11. 34 (25)	9.14 (30)	98
27. 22 (60)	13.7 (45)	162
68. 04 (150)	17.4 (57)	248

Figure 1. Composition A5 containers.

Figure 2. Composite pressure and impulse vs scaled distance.

Figure 3. Composite TMT equivalency for orthorhombic configuration.

Figure 4. Composite TNT equivalency for cylindrical configuration.

(a) Scaled Shipping Box

(b) Full Scale Shipping Box

(c) Full Scale Shipping Drum

(d) Booster and Charge Placement

Figure 5. Test container configurations.

Figure 6. Typical charge placement for equivalency tests.

Figure 7. Test area showing transducer and camera placement

Figure 8. Pressure and impulse vs scaled distance, 11.34 kg (25 lb) charges.

Figure 9. Pressure and impulse vs scaled distance, 22.68 kg (50 lb) charges.

Figure 10. Pressure and impulse vs scaled distance, 27.22 kg (60 lb) charges.

Figure 11. Pressure and impulse vs scaled distance, 68.04 kg (150 lb) charges.

Figure 12. Pressure and impulse TMT equivalencies, 11.34 kg $^{\prime}$ 25 lb) charges.

Figure 13. Pressure and impulse TNT equivalencies, 22.68 kg (50 lb) charges.

Figure 14. Pressure and impulse TMT equivalencies, 27.22 kg (60 lb) charges.

Figure 15. Pressure and impulse TNT equivalencies, 68.04 kg (150 lb) charges.

APPENDIX A TEST DATA SHEETS, TNT EQUIVALENCY OF COMPOSITION A5

Test Number 05-6-01A₁

	Remarks			Limited		Poorly Defined Peak Edge								
BULTE	Time of Arrival	1.10	1.18	3. 10	2.08	•	3.	11.8	6.	19.7	38.6	108.8	109.66	
EXPERIMENTAL RESULTS	A) Test. 22.58 kg (50 lb) Composition As k Scaled Impulse Time of Time of the composition As kp = mesc. kg - 1/3 (mesc) (psi = mesc. kg - 1/3) (mesc)	370 (4.)	(9e)	0 98 (68)	\$78 (61)	101	104 (12.0)	(9.3)	2 6	37.	£.8	25.69 62.69	(2.6)	
	Peak Pressure kPa (pai)	1768 (256)	(268)	717 (104)	156 (124)	345	188 (88)	74 (10.7)	(11.6)	23	21 (3.1)	12	9 (1.3)	
	Distance Meters (ft)	3.37	(11.06)	4.55	(14.9)	3.0	(19.8)	10.11	(33. 2)	20.21	(86.3)	2.0	(147.4)	
	Charace!	-	,	~	•		•	•	2	ş	=	۰	12	
1237 IITLE Explosive Equivalency Testing DATE 1/27/76 1237 SAMPLE Composition A-5 furtignal Staping Container TIME 1232	11 50 lbs/22.69 kg CE J-2 Engineer's Special Blanting Cap HUMD/ITY 0.25 lbs/0.113 Kg C-4 40.55 Charps Wt. BAR, PRESS. 05-60A1 WIND DR.	CONTRACT W. SASS-21.30 WIND VEL. AS FAUCE				COMPAGITION A-3 11.625'—BOOSTER CHARGE	(14.1cm) 1.123" (6.625") 6.625"	APPARENT	(4, 895m, 27" CRATER	The state of the s		PELD EVALUATION	Total detonation occurred; all instrumentation channels functioned; crater diameter 5'5', norminal depth 27".	

Test Number $05-6-01A_2$

1	1	A270 A2 Text	14 km/4a 194 k	1 1460 310	<u> </u>	786 (J11)	9 (14.9) 846 250	Section and the section and th	(10.4) (24.4) (12.4)	19, 11 (19) (11.9)	8 (1)	8 20.21 23.10 20.6	 1.0% booster charge weight	1167.45 10
	•		HONETRON BOUNCE J-2 ENGINEER WITH MIDITY BOOSTER WT. 0.5 Inv/0.227 IG COND. C-4 I.05 Charge Wight, PRESS TEST NO. 06-6-01/2 WIND DAR. CONTRACT NO. NAM-27750 WIND DAR.				₹ +	1	GROUND ZENO	APPARENT			FIZELD EVALUATION Complete definantion occurred, last results indicate that the 1.0% booster charge weight	shall be used for the remarkader of the tests; crater dimension 0.162 indeed seep by 3.2 indeed

Test Number 05-6-01A3

1991 TITLE Explosive Equivalency Testing DATE 1/27/16	91 ,		ĺ	EXPERIMENTAL RESULTS	25C1.TB	
Composition A.5 Original Shipping Container Thire	1501 53*F/1.67*C		4	A3 Test: 22.68 kg (80 kg Composition A5	omposition.	74
CE J-2 Engineer's Bactal Blasting Cap. H'LIMITY CE J-3 Engineer's Bactal Blasting Cap. G-5 Engly Comp. C-4 13 of Charge Wt. WIND DR. KRAB-27749		Distance Meters (ft.)	Pressure F.Pa.	Stated Imputes h.Pe.s.mesc.ckg - U3 (pot-mesc.s.hU3)	A LIVERY (C. C. C	Romarks
	-	1.1	1703	984	1.36	
		(11.8)	2.5	3 £	1.10	
	~	4.65	780	88	3	
- V NOTTING	-		1360	918 (3C)	8	
		9.0	å §	101 (11.2)	3	
OND ZENO		9.6	(\$\$)	158 (F)	8	
APPARENT	•	10, 11	8 년	(16.9)	11.0	
CRATER	2	g.	(19.2)		10.36	
		8.21	2 G	# £	33.85	
	7	(66.3)	0.0	3	23.25	
THELD EVALUATION		*	2, 5 C. 3	N G	109.6	
0.787 meter deep by 3.53 meters wide.	<u> </u>	(347.4)	(8.3)	# E	106.6	
		_				

Test Number 05-6-01A4

	Personal Personalization Testing	1	1/28/76				EXPEHIMENTAL RESULTS	EST: 178	
THE TITLE	Composition A-5 Original Mapping Container	The	भारा				A motification of the second s		2
BANDYLE WEIGHT HOUSE HOUSE		TEMP.	213	1 1 1	Chetence	To see 1	Scaled Impulse	Time of Arrival	ite marks
BOOSTER WT. TEST NO.	0.6 Ibo/0.27 Kg Comp. C-1 12 01 Carigo W.: 05-4-01A	WIND DER.	38	ģ	ê	ž į	(patement of 1/3)		
CONTRACT NO.	MABO-27750	WIND VEL.		-	3	1818	390	1.00	
				۲	2	(364)	3 (2)	1.8	Baseline Drift
				•	4.83	1820	420	2	Limited
					(15.8)		•	•	Bad Transducer
1 88	SOMEONING A-S	BOOSTER CHARGE		-	3	262	3. (£)	3.9	
				•	(21:1)	3 6	186 (E3)	3.8	1
Carolina Car		· ·	<u> </u>	•	10.74	3 8	2 (e)	12.9	
	CRATER	·. (2	(35.2)	(12.9)	(g. g)	12.0	
				-	21.48	28 (6.0)	35 (3.9)	41.3	
		-	_	=	. S.	3.2	£ 7)	‡	
FIELD EVALUATION	¥Q.		:	•	57.73			116.2	Frag Hit?
Complete detonat 0.813 meter deep	Complete detoestion of all material occurred; all instrumentation functioned; critics distributed. 0.813 mater deep by 3.891 materia ords.	functioned: crate	r ormention	ä	(154.6)	16 (1. 6 0)	12 (2.3)	1.4.1	

Test Number 05-6-61A5

	Company of the Paris of the Company	•	1/28/14				EXPERIMENTA: PERLI TO	ER. I.	
41 ~ 14	Autostica A-1 Crights, Bigging Container	1 1	1657			14 15	AS Teat 27.22 ug 165 les Composition AS	out of the control	7
MANDLE WEIGHT WAS CONTROL WAS INCE 2-2 BOOGSTER WT. 0.5 TEST NO.	40 Davist 21 og 1-2 Englasser i Sperial Blancher Cill. 0-8 Davis 27 Kg Comp. C+s 18 of Charge W. 05-5-61A ₅	TEMP. H. MEINTY BAR. PRESS. WINE ORK.	# # #	3 3	Maranca Marana Aft.		Stated impulse $\label{eq:key_state} kP_0 = \text{State} \times (g^{-1}V^3),$ $\label{eq:key_state} (pat-state)$	Time of Arrival meet,	a paragraphic de la companya de la c
CONTRACT NO. NAB	1486- 277 S	WIND VEL	L3 KAGES				•	*	Overside
					, 2	1746	3 £	=	
				~	3	284	ลืซึ	1.8	
				-	4.515	£.	1 d	27.1	Prog file?
COMPOSITION A-1		-BEKATER CHARGE		† ···	7	36	a ij	R	
				•	1. 1,	\$ £	i i	3.20	Brosses Cable
CMOUND ZEM	Treestate Carry	· journa	ŧ	•	9,	2	2.6	2.	
	CRATER			2	138.2	(10.4)	27 e	::	
	, , , , , , , , , , , , , , , , , , ,	· - · 1		-	2, 48	12.43	2 ±	4:.3	
			-	-	173.5	#1 E		2	
TREE EVALUATION						11 3		9.91	
Complete december of all materials. Meters dery by 3, 531 meters with	Complete decreasion of all material, all conframentation functioned, trade Cameraloff, 2, 19, meters deep 59, 3, 33, apriers with	of crater simens	18 J. 181	::	Ž.	S	ងផ	***	
				_			··		

est Number 06-6-03E1

	Confedera Pressualence Tant		2/4/78			EXPERIMENTAL REGULTS	2801.78		
	Composition A-5 Original Shipping Container	1 1	181		13 4	El Tuet: 27.22 kg (66 lb) Composition A5	actifica and the same of the s		_
BOOSTER WT.	00 Day/77 - 22 Mg. Englasor's Special Blanting Cup. E-B Tar/0, 22 Mg Comp. C-4 1% of Charge Wi. 00-6-00E,	1111	20.17 20.17 110.	Distance Meters (ft.)	Pressure 1.Pe (pet)	Scaled impulse kPs - kmsec - kg - V^3 , (pet - mesec - $B^{-1/3}$)	Time of Arrival (Meec)	Remarks	
CONTRACT NO. 74	NAME 27730	WIND VEL.	10 Kindle	3.6	1578	91¢ (\$)	96.0		
			<u> </u>	₹ : :		e (se)	1.38		$\overline{}$
			<u></u>	4.83		3.6	2.00	Limited	
				<u> </u>	3 %	3 8	2.28	Triple Peak	
190dJNOO	COMPOSITION A-5	BOOSTER CHARGE	<u>-</u>	3	L	180	3.6		
				ê	# E	135 (215)	4.20		
GROUND ZERO	The about	Junior Services	- -	19.74	_	101	11.7		
	CRATER		9	â	ΕE	(3.0.4)	12.35	Frag Hit?	
·			•	77.4	17 (2.5)	346	36.2		
		Ţ	=	ê.	L.	તફર લ	39.5		
PIELD EVALUATION			•	£7.73	10 (1.46)	4.1 (4.6)	113.2		
Complete detonation;	Complete defonation; craier dimension 0.610 meter deep by 3.277 meters with	meters wide.	=	(186.e)	L	33 (3.2)	111.8		
									_

Test Number $06-6-03E_2$

I.TS 001ti n A5	Time of Remarks (mass.)	1.20 Frag Hit?	1. 20	2.06 Limited	1.80	3.65 Broken Cable	3.10	11.8	10.0 Ringing	39.7	35.4	113.6	107.0
EXPERIMENTAL REBULTS EZ Tent 27, 22 Mg (60 lb) Composition A5	Scaled Impulse Tri kPa - maec - kg - 1/3 Ar rpst - maec - lb - 1/3; (m	310	3 9	00 0 (48)	3 3		(21)	2.6	(10.6)	3.5		22 (2.4)	(2.0)
123	Pres (pe	Ш	243)	1303			£ €	12.9	ì	នុទ្ធ		25	-
	Datance Metera (ft)	15.6	£ ::	L83	15.8	; 3	(21.1)		35.2	, ,	(30.5)	1 2	(156.6)
	Channel No.	-	-	2	•			1	2		=	•	2
TEST TITLE Explosive Equivalency Test DATE 2/4/76 TEST SAMPLE Composition A-5 Original Shipping Container TIME 1530 Hrs. 1540 Hrs. 1541 FG	pecial Blasting Cap Comp. C-4				The second secon	BOOSTER CHARGE	OROUND ZERO	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CRATER			MELD EVALUATION	188 ust via performe to constraine unerence in aspect 1870 upon prastone tennos centent. (Train dimensions 0.635 meter deep by 3.479 meters wide.

Test Number 06-6-02D₁

					, !	EXPERIMENTAL RESULTS	ESULTS	
TEST TITLE Explosiv	Explosive Equivalency Testing Composition A-6 Conveyor Bucket Simulation	DATE TIME			170	DI Test: 11.34 kg (25 lb) Composition A5	omposition	4.5
SAMPLE WEIGHT 25 1bs/11.34 kg IGNITION SOURCE 1.3 Englassi's 1 BOOSTER WT. 0.35 lbs/0.1131 7237 NO. 064-02D	Secial Biartine Cau		Channel No.	Distance Meters (ft.)	Peak Pressure kPa (pet)	Scaled Impulse kPa · meec · kg - 1/3 (pei · meec · lb - 1/3)	Time of Arrival (maec)	Иста
CONTRACT NO. NASB-27750	7750	WIND VEL. 13 MOLE	-	2.67	1800	520	0.60	Baseline Dri
			٠	(8.77)	1 52 0 (2 2 0)	3 0 (34. 2)	0.82	
			64	3.61	900	9 .	7.40	Baseline Dri
	_		•	(11.6)	1030	310	1.50	
			8	4.80	330	160	2.75	
			•	(18.7)	(88)	126 (14.0)	2.65	
THE STREET		/ MOST TEST	•	8.02	\$ (9)	(10.6)	8.8	
		APPARENT CRATER	ä	(36.3)	(11)	108 (12.0)	8.	
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		•	\$ 2	28 (4. 2)	36	29.6	
-			=	(62.6)	(3.0)	(\$.4)	28.2	
FIELD EVALUATION			•	36.6	12 (1.7)	23 (2.6)	2.7	
Complete detonation Crater dimension 0.457 me	Complete detonation Crater dimension 0.457 meter deso by 2.286 meter wide		=	(117.8)	(1.6)	24 (2.7)	1.08	

Test Number 05-6-02B2

1 2.67 1530 2 3.61 (255) 3 4.60 (677) 6 115.71 (255) 3 4.60 (677) 6 16.77 (255) 9 (115.6) (125) 9 (15.77) (126) 9 (15.77) (126) 9 (15.77) (126) 10 (16.3) (121) 11 (10.6.3) (12.9) 12 (117.9) (1.1) 12 (117.9) (1.1)	TEST SAMPLE Companion A-Conveyor Backer Simulation TIME 1421 HTS SAMPLE VEIGHT 24.1bm.11.34 to 12.00 t	Channel Mo.	Distance Meters (ft)	Pressure KPa	EXPERIMENTAL RESILTS EXPERIMENTAL RESILTS Residuance of Time of Arrival Arri	Composition Time of Arrival (maser)	a AS Remark
1. (1. 1. 1. 1. 1. 1. 1.	•	-	Ш	15.0	290	8 .	
2 3.41 (125) (446 1.50 1.50 (416 1.5			Ę.	(38.5)	1 2	0.80	
11.6 8 (11.6) 310 31		~	3.6	9 6 6 (125)	410	3.	<u> </u>
1 4, 00 640 (120) 1 (15.7) (67) (13) 1 (15.8) (67) (13) 1 (26.3) (13.6) (13.6) 1 (26.3) (13.6) (13.6) 1 (2.6) (2.8) (2.9) 1 (2.6) (2.8) (2.9) 1 (2.6) (2.9) (2.9) 1 (2.6) (2.9) (2.9) 1 (2.6) (2.9) (2.9) 1 (2.6) (2.9) (2.9) 1 (11.0) (1.1) (2.6) (2.9)	1	•	 9::5	(126)	310 (35)	1.58	
15.75 4540 1860		-	8	6. 6. 6. 6. 6.	8 <u>9</u>	2.8	
104 (28.3) (28.4) (11.6) (28.2) (28.3)		•	. t t.	(6.7)	(9T)	2.95	
10 (26.3) (76 (8.2) 18.54 18.54 19.52 19.54	POST TEST	•	8.9	3 6 9.6	104	9.25	
5 18.04 (2.3) (3.9) (3.9) (3.9) (3.9) (4.9) (5.0	APPARENT CRATER		6. 2	(11)	(6.2)	9.23	
(3.5.6) 20 52 (3.9) (3.9) (5.9) (4.17.9) 7.6 25 (1.1) (2.4)		•	16.04	z e	35.9	37.3	
12 (117.0) 7.6 (1.1) (2.4)				2 6 6	52 (5.8)	37.2	
12 (117.9) 7.6 22 (1.1) (2.4)	tent. Total amount was consumed 13 Booster charge	•	35.6	21 E	. 69 . 50	85.5	
	weight was utilized for the remainder of the tests.		9.71	(1.1)	(2.4)	8.6	

Test Number 05-6-02B₃

1							_
Conveyor Bucket Simulation			2	BS Test: 11.34 kg (25 lb) Composition AS	mpostition.	7	
CE 1-2 Factors 12 (12.2) CE 1-2 Factors 12 (2.2) 0.25 10-/11.34 fg Comp. C-4 3 of Clarge ** SAR. PRESS. 0.5-4 2 of Clarge ** SAR. PRESS.	Channel Di	Distance Meters (ft.)	Poek Preseure k Pe (pet)	Scaled Impulse kPs - meec-kg - 1/3 (pet-meec - ib -1/3)	Time of Arrival (meec)	Remarks	
ON TRACT NO. MARKETING	-	2.67	1480	300	sr.•		
	-	£	80 FE	3 9	*		
	~	19.5	1000	286	8 .1		
	Ŀ	(i.i.)	B (421)	R (2)	3 1		
	-	8	5 g	851 (35)	8		
OBSIZ GRIDOUS	•	(15.7)	8 5	3 3			
1	•	20.1	3 8	8 (F)	:		
APPARENT CRATER	ء	6.3	(10.5)	3.E	9.18	72.72	
	•	90	25.55 2.50	* 6	30.5		
	=	(\$2.6)	R €	(4.6)	29.6		
PELD EVALUATION	•	35.6	1.5	2 6	8 6.6		
Contact disparken (a. 467 meter deno br 2.210 meter wide	2 21	(9.711)	7.8 (11)	2. 0	86.4		
	_						_

Test Number 05-6-02B4

TREE TITLE Explosiv	Explosive Equivalency Testing	DA TE	30,76				EXPERIMENTAL RESULTS	ESULTS		
	Composition A -6 Courseyor Bucket Standation as the /11 34 km	370	13.7 Hrs 70.7 7.21.10C			. X	Be Toet: 11.34 kg (25 B) Composition AS	omposition	57	
,	4.3 Empirers from Besting Cap. 6.23 Barton (1) by account Cap. 6.43 Barton (1) by account Cap.		23.7 23.76 23.60	Change No.	Distance Metern (ft)	Pressure # Pa (pat)	Scaled Impulse k.Ps - mesc - kg - $1/3$, pad - mesc - $1/3$,	Time of Arrival (meec)	Remarka	
•				1	2.67	1100	83	0.0	Limited	
				,.	ŧ	1650 (246)	92 G	3.0		
				~	3.61	970	270 (96)	1.00		
	_			•	6:11	8 (H)	•	1.15	Out Cable	
	V			••	6.4	55 (a)	130	2.15		
GROUND ZERO				•	t. 35)	2. (§)	180	2.4		
· · · · · · · · · · · · · · · · · · ·		// POST TEST		•	2.	. e.	8. 6) (8. 9)	9.0		
		APPARENT CRATER	RATER	o i	(Se. 3)	8 e	F (8.9)	8.55		
_ t				5	16.04	15.2	36 (4.0)	2.		
]	=	(\$2.6)	\$ ·6	(3. 5)	30.2		
MELD EVALUATION			•	•	35.6	9.3 (1.2)	(6.4)	2.0		
Contact dispension 0.508 meter desp. by 2.435	Contact diseases a 508 meter deep, in 2, 418 meter vide			ä	117.0,	(2.0)	2.6	1 .0		
		•			_					

Test Number 05-6-02B5

THE TATE Existing Edutation Testing NATE 1/30/76				EAFERIMENTAL RESCUIS	20.1.10	
C. Composition A -6 25 lb Shapping Container 1734E			26	B6 Test: 11.34 kg (25 lb) Composition A5	omposition	7
17 24 24 Enriquet's Special Martin Cap HUMONTY 1/4 har 1% of Charte vi. BAR. PRESS. WIND DR. PRESS.	Charmed No.	Distance Meters (ft.)	Presents R.P.s (pet)	Scaled impulse kPs - masc-kg $^{-1/3}$ (put - masc $^{+1/3}$)	Time of Arrival (mast)	Remarts
CORTINAL I NO. MINISTERIO		2.67	1270	380	0.65	Limited
	7	(F. 7.)	(22)	(36) (36)	0.60	
	7	3.61	8 (§ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	(2g)	1.86	
1	æ	(17.8)	(MET)) (55)	1.36	
	e .	8	3 3	121	1.78	
GROUND ZERO	•	(15.7)	35 55	171 (19.0)	2.00	
1	•	8	3 5	(10.2)	9.9	
APPARENT CRATER	e e	£ .	F (I)	8.F	9.3	
	'n	16.04	2.3)	35 6.67	90.00	
	17	(52.6)	₹ (9	57 (8.4)	3.00	
FIELD EVALUATION	•	36.6	(1.2)	19 (2.1)	0.69	
Crass, diseasains 8,457 meter deep by 2.154 meter wide	21	(117.9)	2 °C	2 ti	8.8	

Test Number 05-6-03C1

TEST BAMPLE Control start & Pilet Shaples Dres TIME Let	3 - L	Distance Press	١	Composition	*
HUMIDITY BAR, PREM. WIND DIR. WIND VEL.			L		
- m - (- se)		1	R Scaled Impulse RPs - menc - kg - 1/3 (put - menc - lb - 1/3)	Arrival (meec)	Nomerts
34.7.80		11 20		1.8	
78.1		(18.9)	200	1.7	
	~	├		1.8	
	8	A1.5,	1 8 E	1.0	
1-64. 6-84 m. 200 m. 200 m. 1200 m. 12	-		35	3	
CAROCHO ZERO	-	1	13.4 (10)	8.	
	•			3	
	g	(6.75)	17.0	r.i	
	2	├	20	 	
	=	8. 3.	(5.9) #5.7	\$1.1	
FIELD EVALUATION Failed to achieve 1007 detention	•	1	1.20	3	
Forth columbiated (1998 B/W Indied to run	22	(212.5)	18.5 (1.46) (2.3)	146.3	

Test Number $05-6-03C_2$

Production Participancy Test				EXPERIMENTAL RESULTS	8U.T8	
Composition A - Fiber Shipping Drum TIME			25	C2 Test: 68.04 kg (150 lb) Composition A5	Composition	n AS
CZ J-4 Enclosex's Special Blacking Cap HUMIDITY 1.5 lbs/0.68 kg Comp. C-4.18 of Charge wt BAR, PRESS. 05-06-05C, WIND DIR.	Charmel No.	Meters (R)	Peak Pressure kPa (pet)	Scaled impulse kPa - masc - kg - 1/3 (pat - masc - ib - 1/3)	Time of Arrival (meec)	Remarks
CONTRACT NO. MARE-1750 WIND VEL.	-	8	2020	580 (68)	1.60	Baseline Drift
-	•	(16.9)	15.00 (1.00)	\$10 (35)	1.75	
*	•	8.8	1050	175 (19.5)	2. 22	Bad Drift
	•	(31.5)	(\$10)	370 (40.9)	2.90	
	6	12.4	578 (94)	136 (15.2)	5.40	
ORBITAL	•	(29.6)	(18)	145	5.22	
- Harris and All San Control of the	•	14.58	126	79 (8.8)	16.1	
	97	(47.8)	103 (15.0)	(10.4)	15.6	
		29.15	25	31 (3.5)	82.3	
	=	(96.6)	33 (4. 8)	(5. 1)	51.3	
MELD EVALUATION	•	84.78	10 (1.39)		150.4	
Accepting this ambient for this way not not Complete describing.	=	(212.5)	11 (1.56)		148.7	
Crains dimensions 0.462 meter (1.58 feet) deep by 3.506 meters (11.5 feet) wide	_					

Test Number 05-6-03C3

- 1	- 5		1
	C3 Ted	Peak Pressure kf's (pal)	
		Mannel Meters Po	Ī
		(hannel No.	
1/31/76	1512 62°F/16.67°C	123 1450 11 (2004)	
DATE	TIME TEMP.	HUNDOTTY 223 BAR. PREMS. 29.79 WIND DIR. 145° WIND VEL. 11 boo	i !
Explosive Equivalency Test	Composition A -5 Piper Suppler Drum	1-2 Engineer's Special Resident Can- 1.5 Describer Comp. C-4: 2 of Charmer's 66-6-03C.	
TEST TITLE	TEST SAMPLE	IGNITION SOCIECE. BENGTER WT. TEST NO.	CONTINUE : INC

CROCND ZERO

MELD EVALLATION	Acoustic focal potet data accumulated	Complete Deformation	Craner dimension b. 810 meters & feet deep by 3.658 meters (12 feet; wide

A5	Remarks											
omposition	Time of Arrival (Maec.)	*:	3.1	3	97.18	5.06	14.3	15.06	\$1.4	10.0	180.6	146.2
C3 Test 66.04 kg (150 lb) Composition A5	Scaled Inspulse kPs -masc-kg-1/3 (pet-masc - lb -1/3)	280	•	3 (S)	91	128	10.00			45 (5.0)	8 6	
S	Peak Pressure kFa (pal)	2158	(272)	1169	98 9	8 8	17.10	8 1	2 6	∰ ±	10	12 (1.7)
	Metance Metans (ft.)	* 4	6.2	6.58		(28.6)	85.45	(47.9)	29, 15	(8 (8 (8)	2	(212.5)
	Channel No.	-	-	2	r (9			o ₁	9	=	•	21

Test Number 06-6-01C4

EXPERIMENTAL RESULTS	C4 Test: 68.04 kg (150 lb) Composition A5	k Scaled Impulse Time of Kernaria kPa amage skg 21/3 Arrival Kernaria (put amage a 10 - 1/3) (redec.)	19 290 1.70 68.9)	11.00 1 00.11 0.10 00.11	25.0 3.0%	(64.5) 3.15	125 5.40		117 68 16.26		23 31 51.26 (0.3) (0.5)		(1.35) (2.4) 140.9		
{		Pressure Pressure RPs (pd)	<u> </u>	L_,		<u> </u>				L,		Ĺ.,			
		Channel Materia No. (ft.)	1			(\$1.5)	-	8	* X. 55	10	6 30.16	ž =	\$.72	12 21	
TEST TITLE Explosive Squivalency Test	C. Compression A 4 Piles Bapping Drum	CE JA Demon't Second Martin Co. HVIGOTY 1.1 lb/h/16 lc Cong. C-4 15 of Charps. M bar. Press. Mad 515.	CONTRACT IO. AMERICAN		3		, and	Contact Contac					FRELD EVALUATION	Year pass was accumulated Consider delegation	Creder dimension ft. 1653 metery deep by 3.756 meters with

Test Number $06-6-01C_5$

True Title Explosive Equivalency Test DATE 2/3/16				EXPERIMENTAL RESULTS	COULTS	
Composition A -5 Fiber Shipping Drem TiME						
BANDLE WFICHT 150 Ba/68.04 kg TEMP. 73°P/22.16°C.			2	CS Thes: 68.04 bg (156 by Composition As		*
3-4 Encloser's Regulal Martin Cho. B 96 the 1.34 he Como. C-4.13 of Charge of	7	Distance	2	_	Arrive of	Romerte
06-4-01C WIND DIR.	ģ	Ê	a (jg	(pet - mesc - lb -1/3)		
	-		25	9.5	1.78	Limited and Baseline Drift
-	-	(16.9)	E 8	1 3	3.1	
•	•	3	10 E	19	2.8	Limited and Baseline Drift.
	-	(21.5)	(((((((((((((((((((3 (13)	2.2	
	-	.71	÷ 3	160	8.15	Double Peaks
ON SECULO CONTRACTOR OF SECULO	•	ê.	₽ê	8.35 6.35	3.6	Broken Cable
	•	14. 86	102		15.6	
	2	(47.5)	(10.9)		12.6	Limited
	•	28.15	# e	25 20.9	81.0	
	=	8.9	(8, 3)		61.6	
MELD EVALUATION	•	2.3	, (L. 2)	18 19.9	150.0	saland edgesinist
Complete Assemblian	2	(212.5)	(1.1)		148.6	Multiple Posts
Crains dimension 9.711 meter desp by 3.353 meter wide						

APPENDIX B SELECTED PHOTOGRAPHS

Pretest Configuration, 27.22 kg Charge, Showing Transducer Array

Post Test Crater, 27.22 kg Charge

Pretest Congifuration, 11.34 kg Charge

Pretest Configuration, 27.22 kg Charge, Showing Firing Line and Breakwire Cables

Pretest Configuration, $68.04~\mathrm{kg}$ Charge. Showing Booster Charge and Blasting Cap

Immediately Following Detonation

20 msec Following Detonation

Dust Cloud at 233 msec Following Detonation

Fireball Characteristics From 1500fps 16 mm Film (27.22 kg Composition A5)

SYMBOLS AND ABBREVIATIONS

A5 Composition A5 explosive

E_I TNT impulse equivalency

Ep TNT pressure equivalency

ft feet

 $ft/1b^{1/3}$ feet per cube root of pounds

I impulse (scaled positive impulse)

kg kilograms

kPa k:lopascal

kPa·ms/kg^{1/3} kiopascal - milliseconds per cube root

of kilograms

m meters

 $m/kg^{1/3}$ meters per cube root of kilograms

P pressure

psi pounds per square inch

psi.ms/ $lb^{1/3}$ pounds per square inch-milliseconds per

cube root of pounds

R radical distance (center-to-center) of

charge and pressure gages

W weight

Z scaled distance

DISTRIBUTION LIST

```
Commander
US Army Armament Research and Development Command
      DRDAR-CG
ATTN:
       DRDAR-LC
       DRDAR-LCM
       DRDAR-LCM-S (12)
       DRDAR-SF
      DRDAR-TSS
                    (5)
       DRDAR-LCU-P
Dover, NJ 07801
Commander
US Army Materiel Development and Readiness Command
ATTN:
      DRCDE
       DRCIS-E
       DRCPA-E
       DRCPP-I
       DRCDI
       DRCSG-S
5001 Eishenhower Avenue
Alexandria, VA 22333
Commander
USDRC Installations and Services Agency
ATTN: DRCIS-RI-IU
       DRCIS-RI-IC
Rock Island, IL 61299
Commander
US Army Armament Materiel and Readiness Command
ATTN: DRSAR-IR (2)
       DRSAR-IRC
       DRSAR-ISE (2)
       DRSAR-IRC-E
       DRSAR-PDM
       DRSAR-LC
       DRSAR-ASF
       DRSAR-SF (3)
       DRSAR-LEP-L
Rock Island, IL 61299
Chairman
Dept of Defense Explosives Safety Board
Hoffman Building #1, Room #856C
2461 Eisenhower Avenue
Alexandria, VA 22331
```

Project Manager for Munition Production
Base Modernization and Expansion
US Army Materiel Development and Readiness Command
ATTN: DRCPM-PBM-LA

DRCPM-PBM-LA
DRCPM-PBM-SF

DRCPM-PBM-EP (2)

Dover, NJ 07801

Director
Ballistic Research Laboratory
ARRADCOM
ATTN: DRDAR-BLE, C.Kingery (2)
Aberdeen Proving Ground, MD 21010

Defense Documentation Center (12) Cameron Station Alexandria, VA 22314

Commander
US Army Construction Engineering
Research Laboratory
ATTN: CERL-ER
Champaign, IL 61820

Office, Chief of Engineers ATTN: DAEN-MCZ-E Washington, DC 20314

US Army Engineer District, Huntsville ATTN: Construction Division-HAD-ED (2) P.O. Box 1600 West Station Huntsville, AL 35807

Commander
Indiana Army Ammunition Plant
ATTN: SARIN-OR (2)
SARIN-SF
Charlestown, IN 47111

Commander
Kansas Army Ammunition Plant
ATTN: SARKA-CE
Parsons, KS 67537

Commander Lone Star Army Ammunition Plant ATTN: SARLS-IE Texarkana, TX 57701 Commander
Milan Army Ammunition Plant
ATTN: SARMI-S
Milan, TN 38358

Commander
Radford Army Ammunition Plant
ATTN: SARRA-IE (2)
Radford, VA 24141

Commander
Badger Army Ammunition Plant
ATTN: SARBA (2)
Baraboo, WI 53913

Commander
Holston Army Ammunition Plant
ATTN: SARHO-E
Kingsport, TN 37662

Commander
Iowa Army Ammunition Plant
ATTN: SARIO-A
Middletown, IA 52638

Commander
Joliet Army Ammunition Plant
ATTN: SARJO-SS-E
Joliet, IL 60436

Commander Longhorn Army Ammunition Plant ATTN: SARLO-O Marshall, TX 75670

Commander Louisiana Army Ammunition Plant ATTN: SARLA-S Shreveport, LA 71102

Commander
Newport Army Ammunition Plant
ATTN: SARNE-S
Newport, IN 47966

Commander
Pine Bluff Arsenal
ATTN: SARPB-ETA
Pine Bluff, AR 71601

Commander
Sunflower Army Ammunition Plant
ATTN: SARSU-0
Lawrence, KS 66044

Commander Volunteer Army Ammunition Plant ATTN: SARVO-T Chattanooga, TN 34701

Weapon System Concept Team/CSL ATTN: DRDAR-ACW Aberdeen Proving Ground, MD 21010

Technical Library ATTN: DRDAR-CLJ-L Aberdeen Proving Ground, MD 21010

Technical Library ATTN: DRDAR-TSB-S Aberdeen Proving Ground, MD 21005

Benet Weapons Laboratory Technical Library ATTN: DRDAR-LCB-TL Watervliet, NY 12189